Scaling hot-electron generation to high-power, kilojoule-class laser-solid interactions.

نویسندگان

  • P M Nilson
  • A A Solodov
  • J F Myatt
  • W Theobald
  • P A Jaanimagi
  • L Gao
  • C Stoeckl
  • R S Craxton
  • J A Delettrez
  • B Yaakobi
  • J D Zuegel
  • B E Kruschwitz
  • C Dorrer
  • J H Kelly
  • K U Akli
  • P K Patel
  • A J Mackinnon
  • R Betti
  • T C Sangster
  • D D Meyerhofer
چکیده

Thin-foil targets were irradiated with high-power (1 ≤ P(L) ≤ 210 TW), 10-ps pulses focused to intensities of I>10(18) W/cm(2) and studied with K-photon spectroscopy. Comparing the energy emitted in K photons to target-heating calculations shows a laser-energy-coupling efficiency to hot electrons of η(L-e) = 20 ± 10%. Time-resolved x-ray emission measurements suggest that laser energy is coupled to hot electrons over the entire duration of the incident laser drive. Comparison of the K-photon emission data to previous data at similar laser intensities shows that η(L-e) is independent of laser-pulse duration from 1 ≤ τ(p) ≤ 10 ps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved measurements of hot-electron equilibration dynamics in high-intensity laser interactions with thin-foil solid targets.

Time-resolved K(α) spectroscopy has been used to infer the hot-electron equilibration dynamics in high-intensity laser interactions with picosecond pulses and thin-foil solid targets. The measured K(α)-emission pulse width increases from ~3 to 6 ps for laser intensities from ~10(18) to 10(19) W/cm(2). Collisional energy-transfer model calculations suggest that hot electrons with mean energies f...

متن کامل

Free-Electron Lasers as Pumps for High-Energy Solid-State Lasers

High average-power free-electron lasers may be useful for pumping high peak-power solid-state laser-amplifiers. At very high peak-powers, the pump source for solid-state lasers is non-trivial: flash lamps produce thermal problems and are unsuitable for materials with short florescence-times, while diodes can be expensive and are only available at select wavelengths. FELs can provide pulse train...

متن کامل

Electron temperature scaling in laser interaction with solids.

A precise knowledge of the temperature and number of hot electrons generated in the interaction of short-pulse high-intensity lasers with solids is crucial for harnessing the energy of a laser pulse in applications such as laser-driven ion acceleration or fast ignition. Nevertheless, present scaling laws tend to overestimate the hot electron temperature when compared to experiment and simulatio...

متن کامل

Relativistic plasma nanophotonics for ultrahigh energy density physics

The heating of dense matter to extreme temperatures motivates the development of powerful lasers1–4. However, the barrier the critical electron density imposes to light penetration into ionized materials results in the deposition of most of the laser energy into a thin surface layer at typically only 0.1% of solid density. Here, we demonstrate that trapping of femtosecond laser pulses of relati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 105 23  شماره 

صفحات  -

تاریخ انتشار 2010